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WISE Regression/Correlation Interactive Lab 

 

Introduction to the WISE Correlation/Regression Applet 

 

This tutorial focuses on the logic of regression analysis with special attention given to 

variance components.  The tutorial provides a brief review and four interactive exercises. 

At the end of the tutorial there are some thought questions.  If you have a hard copy of 

this handout, you do not need to print anything from the tutorial; everything that you need 

for recording results is in this handout. 

 

Terminology: 

Y variable: this is the ‘Dependent’ Variable, the variable you wish to predict. 

X variable: this is the ‘Independent’ Variable, the variable used to predict of Y. 

SS Regression = SS Predicted = SS Explained  

SS Error = SS Residual = SS Unexplained 

 

 
 

To begin the tutorial go to http://wise.cgu.edu tutorials, choose ‘correlation and 

regression.’ For this assignment, you will complete Modules 1 through 3. 

http://wise.cgu.edu/
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Using the WISE Correlation/Regression Tutorial 

 

The applet screen will open with a description of the applet in the large box on the right.  

After reading this information, click the box marked ‘Exit.’  This box should now contain 

four columns with numbers.  The first two columns are your X, Y pairs.   

 

Change the box in the lower right hand corner from ‘The Mean’ to ‘Regression.’ 

 

Near the bottom of the applet, there are several boxes. Some are checked (Show SS error, 

Show Regression Line, Show SS predicted, and Show Mean of Y) and some are not 

checked (Show SS total, Show Deviations as Squares).  Modify these so that none of the 

boxes are checked.   

 

For some exercises you will drag the data points to create relationships.  To drag data 

points, click on the data point with your mouse and drag to another location.  The 

correlation will appear in box on the right.   

 

The remaining pages of the handout are the same as pages found in the tutorial.  Use 

these to record your work. You will answer several on-screen multiple choice questions 

before you get to the sections that are on the pages that follow. 

 

You may want to refer back to this page when you get to the part of the tutorial that uses 

the applet. 
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WISE Regression/Correlation Interactive Lab: Regression 

Module #1  
 

Module #1, Exercise #1 
Introduction to the Regression Applet: Calculations and observations 

In this exercise, you will learn how to use the WISE regression applet to deepen your 

understanding of regression.  Using the very small set of data shown below, we will step 

through relevant regression values and see how they are calculated and how they are 

represented graphically. Answers are provided for all problems in Module 1 at the end of 

this handout.  

Set up the applet:  From the ‘Select a Lesson:’ menu in the lower right hand corner of the 

applet, choose ‘Regression.’  Remove the checks from all boxes except for the box: Show 

Regression Line.   

Case X  Y  

  1 1 2 

  2 3 5 

  3 5 7 

  4 7 6 

a. Correlation, Slope, and Y-intercept. The applet provides these statistics, which are 

important for regression analysis. Find these terms in the applet and enter each below. 

correlation (r)   = _________ 

slope (b)           =  _________ 

intercept (a)  = _________ 

b. The regression equation. The regression equation is a formula for the straight line 

that best fits the data. Later we will learn exactly how ‘best fit’ is defined. The regression 

equation can be used to predict the Y score (called Y´, or Y-prime) for each of our X 

values. The general form of the regression equation is Y´ = a +bX . 

In our example, a=2.2 and b=.700, so the regression equation is Y´ = 2.2 + .700X. Our 

first X score is 1, which generates a predicted Y score of 2.9, from 2.2 + .7(1).  Calculate 

the three remaining Y´ values by hand and enter them into the table below. If you get 

stuck, you may check your answers by clicking the links to answers in the on-line tutorial 

but make sure that you can do the calculations and interpretations yourself. 
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Case X  Y  Y´  

  1 1 2 2.9 

  2 3 5    

  3 5 7    

  4 7 6    

 

SS Total (Total Variance) 

SS total is the sum of squared deviations of observed Y scores from the mean of Y.  This 

is an indication of the error we expect if we predict every Y score to be at the mean of Y.  

(If X is not available or if X is not useful, then the mean of Y is our best prediction of Y 

scores.) 

c. To calculate SS Total, take each value of Y, subtract the mean, and square the result, 

then sum all of the values in the column. A general formula for SS Total is
 

2)YY(  . 

For these data the mean of Y is 5. For the first case, the squared deviation from the mean 

is 9. Calculate the values for the last three cases, and sum the values for all four cases in 

the last column to get SS Total. 

Case   X     Y  )( YY   
2)( YY   

  1    1     2 (2-5) = -3 (-3)2 = 9 

  2    3     5       

  3    5     7       

  4    7     6       

Sum  16    20     

d. Now in the applet,  place a check mark in the boxes titled Show SS Total and Show 

Mean of Y and remove all other checks.  The vertical black lines represent the deviations 

of each case from the mean of Y. Verify the correspondence of the length of these lines 

with the values in the table for the column )( YY  . Which case has the largest 

deviation from the mean?   

The largest deviation from the mean is _____ for Case ___. 

Hint: Look at the graph in the applet and at your calculations in the table. 

e. Now check the box labeled Show Error as Squares. The sizes of the black squares 

correspond to the squared deviations from the mean, and the sum of the areas of these 

squares corresponds to SS Total. Notice how the deviations from the mean for the first 

and fourth cases are -3  and +1, while the squared deviations are 9 and 1. This shows how 
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points farther from the mean contribute much more to SS Total than points closer to the 

mean. What is the contribution of the second case to SS Total? Why?  

The contribution to SS Total for Case 2 is ______ because 

 

 

 

f.  Now calculate the sum of the squared deviations from the mean 
2)YY(  . You can 

do this by adding the values in the column headed
2)( YY  .  

2)YY(   = SS Total = ________.   In the applet, SS for Total = ________.  

 

g.  Explain what SS Total means.  How would the plot differ if SS Total was much 

smaller, say 2.00?  What if SS Total was much larger, say 100? 

 

 

SS Error  

SS Error is the sum of squared deviations of observed Y scores from the predicted Y 

scores when we use information on X to predict Y scores with a regression equation.  SS 

Error is the part of SS Total that CANNOT be explained by the regression.  

h. Calculations. Complete the calculations below using the predicted scores (Y´) 

calculated in question 1b. The sample mean is 5.0 for every case. 

Case X Y Y´ (Y - Y´) (Y - Y´)2 

  1     1     2 2.9 2-2.9 = -0.9 (-0.9)2 = 0.81 

  2     3     5          

  3     5     7          

  4     7     6          

Sum   16   20         

i.  Now place check marks in the boxes titled Show Regression Line and Show SS error,  

and remove checks from all other boxes. Deviations of the observed points from their 

predicted values on the regression line are shown in red.  



 6 

The largest deviation is for Case ____, and the size of the deviation is ______. 

The smallest deviation is for Case ____, and the size of the deviation is ______. 

j. Now check the box titled Show Errors as Squares. The sizes of the red squares 

correspond to the squared deviations. In the table for part h, compare the squared 

deviations shown in the last column for Cases 2 and 3. Observe how the red boxes for 

Cases 2 and 3 correspond to these values. The sum of the squared deviations is the sum of 

the last column in the table.  

Record your calculated value here _________.  This is the Sum of Squares Error. 

In the applet under Analysis of Variance find the value for SS Error _____________ 

k.  Explain in simple English what SS Error means.  What would the plot look like if SS 

Error was very small compared to SS Total? What would the plot look like if SS Error is 

about as large as SS Total? 

 

 

 

SS Predicted  

SS Predicted is the part of SS Total that CAN be predicted from the regression.  This 

corresponds to the sum of squared deviations of predicted values of Y from the mean of 

Y. 

L. Calculations. Complete the calculations below using the predicted scores (Y´) 

calculated for each case in part 1b and the mean of Y (5).  

Case X Y Y´ )( YY   2YY )(   

  1     1     2   2.9 2.9 – 5.0 = -2.1 (-2.1)2 = 4.41 

  2     3     5        

  3     5     7          

  4     7     6          

Sum   16   20  20.0       

m.  Now click the boxes marked Show Mean of Y and Show Regression Line and remove 

the checks from all other boxes.  Check Show SS Predicted to see deviations of regression 

line from the mean, shown in blue.  The blue lines represent the differences between the 

mean and predicted scores.  If X were not useful in predicting Y, then the best prediction 

of Y would be simply the mean of Y for any value of X, and the blue lines would be zero 
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in length. If X is useful in predicting Y, then the predicted values differ from the mean.  

The blue lines give an indication of how well X predicts Y.   

Click the box marked Show Error as Squares, to see the squared deviations of predicted 

scores from means. Compare these to the red squares for SS Error. (You can click Show 

SS Error if you would like to be reminded of the size of the red squares.) Is X useful for 

predicting Y in this plot?  How do you know? 

  

n. The sum of the squared deviations of the predicted scores from the mean is the sum of 

the last column in the table in part L.  

Record the calculated value here _________.  This is the Sum of Squares Predicted. 

In the applet under Analysis of Variance find the value for SS Predicted _____________  

o. Explain what SS Predicted means.  What would the plot look like if SS Predicted was 

very small relative to SS Total?   

  

  

 

r-squared as proportion of variance explained 

p. Note that SS Total = SS Predicted + SS Error.  (14.000 = 9.800 + 4.200).  Thus, with 

the regression model, we split SS Total into two parts, SS Predicted and SS Error. We 

can compute the proportion of SS Total that is in SS Predicted.  In terms of sums of 

squares, this is the ratio of SS Predicted to SS Total. 

Calculate [SS Predicted/ SS Total] = _________ / __________ = ____________.  

SS Total is the numerator of the variance of Y (i.e., 
2)YY(   ), so the calculated ratio 

can be interpreted as the proportion of variance in Y that can be predicted from X using 

the regression model. A useful fact in regression is that this ratio is equal to the 

correlation squared (r-squared).  Thus, the correlation squared (r-squared) represents the 

proportion of variance in Y that can be explained by X, using the regression model.   

What does the applet report for the correlation r and r-squared? 

r = ______;    r squared = ________ 

Summarize the relationship between X and Y for this set of data in simple English. 
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Go to Module #1, Exercise #2. Be sure to following the link at the bottom of the 

applet screen. 

Regression Module #1, Exercise #2 

Sums of Squares: Computation and interpretation 

You will learn about the meaning of Sums of Squares and how they can be represented 

and understood graphically.  You will be asked to make some calculations using a very 

small data set. These data, along with many calculated values, are represented in the 

applet. Proceed to the applet for Module 1, Exercise 2 (follow the link on the web page). 

Again, answers for this exercise are found at the end of this handout.  

Case   X    Y  Y´ )( YY 

 

2)( YY 

 

(Y - Y´) (Y - Y´)2 
)( YY 

 

2YY )( 
 

1   1   4   3.40   .75   .5625   .60   .3600   .15   .0225 

2   3   3                      

3   5   2                      

4   7   4                      

Sum 16 13   13.00 0.00 2.7500 0.00 2.7000 0.00    .0500 

a. Look at the plot of the data. Does it appear that the regression model will explain a 

large portion of the variance in Y? 

 

b. Calculate values for all of the empty cells in the table. Values for Case 1 and for the 

Sum are shown so that you can check your work. Some useful information can be found 

in the applet. 

Hints:  You can calculate Y′ with the formula shown in the applet: Y′ = -.050X + 3.450.   

 Calculate the mean of Y by dividing the Sum of Y by n. (You should get 3.25.) 

 

c. Now place check marks only in the boxes titled Show SS Total and Show Mean of Y.  

The four vertical black lines represent the deviations of each case from the mean of Y. 

Check the correspondence of the length of these lines with the values in the table that you 

calculated for the column )( YY  .Which case has the largest deviation from the mean?   

The largest deviation from the mean is _____ for Case ___. 

Hint: Look at the graph in the applet and at your calculations in the table.  

d. Now check the box labeled Show Error as Squares. The black squares correspond to 

the squared deviations from the mean, and the sum of the areas of these squares 

http://humboldt.edu/~cla18/regtutor/regappletfix2.html
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corresponds to SS Total. Notice how the deviations from the mean for the first and 

second cases are .75 and -.25 (a ratio of 3:1), while the squared deviations are .5625 and 

.0625 (a ratio of 9:1). This shows how points farther from the mean contribute much 

more to SS total than points closer to the mean. What is the contribution of the third case 

to SS Total? What is the ratio of this contribution compared to the contribution of the 

second case?  

The ratio of the contribution to SS total for Case 3 vs Case 2 is ______:______. 

e. Now remove checks from all of the boxes, and check the boxes labeled Show 

Regression Line and Show SS error. The regression line allows us to find the predicted 

value of Y for any value of X. The vertical red lines correspond to the deviations of the 

observed values for Y from the predicted values on the regression line (Y′). Which case 

has the largest deviation from its predicted value of Y (Y′)? 

The largest deviation from the predicted value is _____ for Case ___.     

Hint: Look at the graph and your table. 

f. Now check the box labeled Show Error as Squares. The red squares correspond to the 

squared deviations of Y from the predicted values (Y′). The sum of these areas 

corresponds to SS Error. You can compare SS Error with SS Total by also checking the 

box labeled Show SS Total. How does SS Error compare to SS Total? Do you think SS 

Error is much smaller than SS Total? Now check your table. What are the values for SS 

Error and SS Total? 

SS Error = _______   SS Total = _______ 

g. Now remove checks from the boxes Show SS Error, Show SS Total, and Show Error as 

Squares, and check the boxes labeled Show Mean of Y and Show SS Predicted. (Show 

Regression Line is still checked.) The blue vertical lines show the deviations between the 

predicted value of Y (Y′) and the mean of Y for each case.  

Now check Show Error as Squares. The sum of the areas of these squares corresponds to 

SS Predicted. If the regression line is near to the mean, that tells us that the regression 

model does not predict Y much better than the mean does. Do you think SS Predicted is 

much smaller than SS Total? Now check your table. What are the values for SS Predicted 

and SS Total? 

    

SS Predicted = _______   SS Total = _______ 

 

 

h. Verify that SS Total = SS Predicted + SS Error.  

 

___________  =  ___________ +  _________ 

SS Total          =  SS Predicted   +  SS Error 
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i. We can calculate r squared from our SS values.  

What portion of SS Total is accounted for by SS Predicted?  

[SS Predicted / SS Total] = [_________ / _________]  =  ___________ 

What is the value for r squared as reported in the applet?  ___________  

Thus, we can say “r squared is the proportion of variance in Y that is explained by X.” 

The total variability in Y is measured by the sum of the squared deviation of Y scores 

around the mean of Y, which is SS Total. When we use linear regression, information on 

X is used to generate the regression line and the predicted value of Y. The part of SS 

Total that is ‘explained’ by the model is SS Predicted. The proportion explained is SS 

Predicted divided by SS Total.  
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Answers for Module 1, Exercise 1 and 2: 
 

Module 1, Exercise 1a: 

 

The correlation (r) is .837, the slope of the line (b) is .700, and the Intercept (a) is 2.200, 

taken from the right panel in the applet for Regression Module 1, Exercise 1. 

 

Module 1, Exercise 1b: 

 

4.3, 5.7, and 7.1.  Calculation for the last value is 2.2 + .7x7 = 2.2 + 4.9 = 7.1. 

 

Module 1, Exercise 1c: 

 

SS Total = 14.  The squared deviations from the mean for the four cases are 9, 0, 4, and 1, 

respectively. 

 

 

Module 1, Exercise 1d: 

 

The largest deviation from the mean is -3, for Case 1. 

 

 

Module 1, Exercise 1e: 

 

The contribution of the second case to SS Total is zero, because the Y value of 5 is 

exactly equal to the mean. 

 

 

Module 1, Exercise 1f: 

 

SS Total = 14. You can find this as the sum of the last column in your table, and this 

value is also shown in the applet in the SS column in the Analysis of Variance section. 

 

 

Module 1, Exercise 1g: 

 

SS Total is the sum of the squared deviations of Y scores from the mean of Y. If SS Total 

was much smaller, then all of the Y values must be close to the mean. SS Total could be 

much larger for several reasons: many of the Y values could be somewhat farther from 

the mean, a few values, or even one value, could be very far from the mean, or we could 

simply have many more Y values. Note that a single Y value that differed from the mean 

by 10 points would contribute 100 to SS Total. 

 

There is a close relationship between SS Total and variance. An estimate of the 

population variance taken from a sample is calculated at the sum of the squared 
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deviations from the mean divided by the degrees of freedom, which is (SS Total) / (n-1) 

for a single sample.  In our example, this is 14/3 = 4.667. The standard deviation is the 

square root of variance = 2.16, the value shown in the applet as the std dev for the DV.  

 

Module 1, Exercise 1h: 

 

For the second case, Y′ = 4.3, Y-Y’ = (5 – 4.3) = .7, and (Y – Y′)2 = .49.  For the third 

case, Y′ = 5.7, (Y-Y′)=(7 – 5.7) = 1.3, and (Y – Y′)2 = 1.69.   

 

 

 

Module 1, Exercise 1i: 

The largest deviation is for Case __3__, and the size of the deviation is _1.3_. 

The smallest deviation is for Case __2__, and the size of the deviation is __.7__. 

 

 

Module 1, Exercise 1j: 

 

The calculated value for the Sum of Squares Error = SS Error = 4.200. 

 

 

Module 1, Exercise 1k: 

SS Error is the sum of the squared deviations of observed scores from the predicted 

scores. If SS Error is very small, every observed score is close to the predicted score, so 

the plot of every observed score is close to the regression line.  

If SS Error is much smaller than SS Total, then the sum of deviations around the 

regression line is much smaller than the sum of deviations around the mean. Thus, the 

regression equation gives much more accurate predictions of scores than simply using the 

mean as the prediction for all scores. The plot would show a strong linear relationship 

between X and Y. 

If SS Error is about the same size as SS Total, then the regression equation has not 

improved our prediction of Y scores. The regression line would be close to horizontal at 

the mean. The plot would not show any indication of a linear relationship between X and 

Y.  

 

Module 1, Exercise 1L: 

 

For the second case, the predicted score is 4.3, which is .7 below the mean of 5.0, so the 

squared deviation of the predicted score from the mean is .49. For the third case, the 
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deviation is +.7, and for the fourth case the deviation is +2.1. The sum of the squared 

deviations is 9.80. 

 

 

Module 1, Exercise 1m: 

 

Yes, it appears that X is useful in predicting Y in our plot. The blue lines, which indicate 

predictive ability, are substantial. They are relatively long, compared to the red lines we 

observed for error deviations, and the blue squares are relatively large compared to the 

red squares. Thus, it appears that the SS Predicted is substantial.   

 

 

Module 1, Exercise 1n: 

 

The Sum of Squares Predicted from the Analysis of Variance table in the applet is 9.800, 

which is also the sum of the last column in the table in part L. 

 

Module 1, Exercise 1o: 

 

SS Predicted is the sum of the squared deviations of predicted scores from the mean. If 

the regression model is not at all useful, then the predicted score will be the mean for 

each case, and SS Predicted will be zero. If the regression model is only slightly helpful, 

then the predicted scores will be only slightly different from the mean, and SS Predicted 

will be small relative to SS Total. This plot would show virtually no linear relationship 

between X and Y, and the regression line would be close to the horizontal line for the 

mean of Y. 

 

If there is a strong linear relationship in the data, SS Predicted is large relative to SS 

Error, and the observed data fall close to the regression line. 

 

 

Module 1, Exercise 1p: 

 

[SS Predicted / SS Total] = 9.800 / 14.000 = .700.   

 

The applet reports r = .837 and  r squared = .700. 

 

This sample data shows a strong linear relationship, as measured by r=.837. The plot 

shows this strong positive relationship, with larger values of X generally associated with 

larger values of Y. In this sample, 70% of the variance in Y can be explained by the 

linear relationship with X. 

 

We should note that this is an extremely small sample, and that we would not be able to 

generalize to the relationship in a population of X and Y values, even if there four cases 

are a random sample from that population.  

 



 14 

Answers for Module 1, Exercise 2: 
 

Module 1, Exercise 2a: 
Look at the plot of the data. Does it appear that the regression model will explain a large 

portion of the variance in Y? 

 

The plot does not show a clear relationship between values of X and Y. Thus, we do not 

expect that a linear regression model will account for much of the variance in Y. 

 

 

Module 1, Exercise 2b:  
Add your calculated values for each column to check against the sum that is shown in the 

table. If you get a different answer, check your calculations for the first row to make sure 

that you used the right values. Then use the same procedure for each of the remaining 

rows. Here are answers for the second case. 

 

  X    Y  Y´ )( YY 

 

2)( YY   (Y - Y´) (Y - Y´)2 
)( YY 

 

2YY )(   

3 3 3.30 -0.25 0.0625 -0.30 0.09 0.05 0.0025 

 

 

 

Module 1, Exercise 2c: 
The largest deviation from the mean is -1.25 for Case 3.  

 

 

Module 1, Exercise 2d: 

The ratio of the contribution to the SS total for Case 3 compared to Case 2 is 

1.5625:.0625, which simplifies to 25:1. Notice that the deviation from the mean is five 

times greater for Case 3 compared to Case 2 (-1.25 vs. -.25), so the squared contribution 

is 25 times greater. 

 

 

Module 1, Exercise 2e: 

The largest deviation from the mean is -1.20 for Case 3.  

 

 

Module 1, Exercise 2f: 

The red boxes for SS Error are very similar to the black boxes for SS Total, so it appears 

that SS Error is nearly as large as SS Total. The computed values confirm this 

conclusion. SS Error = 2.70, while SS Total = 2.75. 

 

 

Module 1, Exercise 2g: 
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The red boxes for SS Predicted are much smaller than the black boxes for SS Total, so it 

appears that SS Predicted is only a small fraction of SS Total. The computed values 

confirm this conclusion. SS Predicted = .05, while SS Total = 2.75. 

 

Module 1, Exercise 2h: 

 

SS Total = 2.75 

SS Predicted = .05 

SS Error = 2.70 

 

SS Total          =  SS Predicted   +  SS Error 

2.75 = .05 + 2.70 

 

 

 

Module 1, Exercise 2i: 

 

[SS Predicted / SS Total] = [.05_ / 2.75]  = .018 

 

 

 


