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A Gentle Introduction to Resampling Techniques 
 

Overview: 

Resampling techniques are rapidly entering mainstream data analysis; some statisticians believe 

that resampling procedures will soon supplant common nonparametric procedures and may 

displace most parametric procedures as well. This paper introduces the vocabulary, logic, and 

demonstrates basic applications of permutation and bootstrap resampling methods. 

 

Resampling methods have become practical with the general availability of cheap rapid 

computing and new software. Compared to standard methods of statistical inference, these 

modern methods often are simpler and more accurate, require fewer assumptions, and have 

greater generalizability. Resampling provides especially clear advantages when assumptions of 

traditional parametric tests are not met, as with small samples from non-normal distributions. 

Additionally, resampling can address questions that cannot be answered with traditional 

parametric or nonparametric methods, such as comparisons of medians or ratios. The resampling 

methods for testing means, medians, ratios, or other parameters are the same, so we do not need 

new methods for these different applications. Thus, resampling also has advantages of 

conceptual simplicity. 

 

Parametric tests can be criticized because they require restrictive assumptions, tests may be 

difficult to interpret, and no tests are readily available for some interesting statistics. More 

importantly, parametric tests can fail to detect important effects or give misleading results under 

some conditions. For example, adding a relatively extreme observation can reduce the sensitivity 

of a parametric test, even if the observation is in the direction of observed effects. An Excel 

spreadsheet demonstrating the failure of an independent samples t-test can be accessed at 

http://wise.cgu.edu under WISE stuff, Excel downloads. 

 

Three resampling methods are commonly used for different purposes: 

 

Permutation methods use sampling without replacement to test hypotheses of „no effect‟; 

Bootstrap methods use sampling with replacement to establish confidence intervals;  

Monte Carlo methods use repeated sampling from populations with known characteristics to 

determine how sensitive statistical procedures are to those characteristics. 

 

 

Permutation Methods  

 

With permutation methods (also called the randomization technique), we randomly redistribute 

all of the observed scores into two groups according to our observed N1 and N2, and calculate a 

statistic of interest, such as the difference in means or medians. If we do this many times, say 

1000 times or 10000 times, we generate a distribution of observed values for the statistic of 

interest under the null hypothesis of no difference between the two populations. We compare our 

observed statistic to this empirical sampling distribution to determine how unlikely our observed 

statistic is if the two distributions are the same. If the empirical sampling distribution includes 

320 samples out of 10000 as extreme or more extreme than our observed sample (either positive 

or negative) we conclude that the probability of such an extreme outcome is only about .032, 

two-tailed. With conventional levels of statistical significance we reject the hypothesis that the 

two populations are the same. 

http://wise.cgu.edu/
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Randomization allows us to generate the sampling distribution for any statistic of interest 

without making any assumptions about the shape or other parameters of the population 

distributions. The empirical sampling distribution (or reference distribution) emerges from the 

multiple randomizations of our observed data. We can determine the percentile location for our 

observed statistic on the empirical sampling distribution, and determine how unlikely the 

observed statistic is if the null hypothesis is true. With small samples, we could generate the 

sampling distribution by calculating the statistic of interest for each possible order. However, 

when samples are even of modest size, the number of possible orders is so large that it is more 

practical to use randomization to generate the sampling distribution. With 10 cases in each of 

two groups, there are 20C10 = 184,756 possible randomizations. 

 

Bootstrapping 

 

With bootstrapping, we are able to estimate confidence intervals for a parameter of interest. We 

assume that our original sample is reasonably representative of the population from which it 

comes. We randomly sample with replacement from the observed scores to produce a new 

sample of the same size as our original sample. Now we can calculate the statistic of interest 

(e.g., median) from the new sample. With a large number of new samples, at least 10000, we 

generate an empirical sampling distribution for the statistic of interest and we can determine 

upper and lower confidence limits for this statistic. If we have two groups, we can generate a 

bootstrapped sample from each group separately and calculate the statistic of interest (e.g., 

difference between medians, a t-test value, or a difference in variance). With multiple 

replications, we generate a sampling distribution for the statistic of interest. Thus, bootstrapping 

produces confidence intervals around observed effects.  

 

Monte Carlo 

 

With Monte Carlo techniques, we can specify several populations with known characteristics, 

and sample randomly from these distributions. With many replications, we generate sampling 

distributions for the statistics of interest. For example, we may be interested in the sensitivity of 

the t-test to violations of the assumption of equal variance or normality. We can generate 

populations that have specific characteristics, and then with multiple resampling we can generate 

sampling distributions for the statistics of interest. Monte Carlo studies have demonstrated that 

when two samples are equal in size, the t-test for independent groups is remarkably unaffected 

by differences in population variance. However, when the samples are small, unequal in size, and 

the populations have substantially different variance, the t-test is either too liberal or too 

conservative. The „triple whammy‟ of small sample size (e.g., n<20), unequal n (e.g., ratio > 

4:1), and unequal variance (e.g., ratio > 4:1) generates a test that is too liberal when the sample 

with the smaller n is from the population with the larger variance. Monte Carlo methods have 

been used to examine the effects of a wide range of population characteristics on various 

univariate and multivariate statistics. 

 

Summary 

 

In all three resampling procedures, a statistic of interest is calculated from multiple samples. 

Permutation reshuffles the observed cases, sampling without replacement. 

Bootstrapping selects from the populations of observed cases, sampling with replacement. 

Monte Carlo typically samples with replacement from theoretical distributions with specific 

characteristics. A large number of resamples (say 10,000+) is desirable to give stable results. 
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Failure of the t-test: Girl Scout Cookie Sales 

 

To test the effect of a motivator for Girl Scouts selling cookies, a troop of nine was randomly 

divided into two groups. A control group of four was given the standard instructions, while the 

remaining five were also told that profits from sales would be used for a trip to Disneyland. 

The data represent the numbers of boxes of cookies sold in one week. Do we have statistically 

significant evidence that the Disneyland motivator was more effective than the standard? 

 

In the first set of data a t-test 

detects a significant difference 

between the two groups, p=.021. 

 

In the second set of data, we have 

even stronger evidence of an 

effect. There is no obvious 

extreme score (maximum z=2.04). 

Yet the t-test is less sensitive to 

the difference between means 

because of the increased SD and 

the assumption that the underlying 

distributions are normal,  

t(7) = 2.277, p=.057. 

 

Permutations test: The null hypothesis is that there is no difference between the two 

populations, such that our observed sample is just one of the many equally likely possible ways 

these nine scores could be distributed between the two groups. To test this hypothesis, we 

randomly distribute the nine observed scores into two groups of N1=4 and N2=5 and compute a 

statistic of interest, such as t or the difference between medians. We record that statistic. With a 

large number of random redistributions we can generate an empirical distribution of our statistic 

under the assumption that there is no difference between the two groups in the population. Then 

we can determine where our observed statistics falls on this null distribution.  
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Example from Howell: “Hurry up Fella!” 
 

This example is adapted from David Howell‟s website (reference on last page). It uses heuristic 

data generated by Howell to represent data collected by Ruback and Juieng (1997). This study 

was motivated by the perception that when you are waiting for someone‟s parking space, the 

driver you are waiting for takes longer than necessary to move out of the space. Our data 

represent the number of seconds it took 40 drivers to begin moving out of their parking space 

from the time they touched their car. For half of the observations someone was waiting for the 

space. 

 

No one waiting 

36.30  42.07  39.97  39.33  33.76  33.91  39.65  84.92  40.70  39.65 

39.48  35.38  75.07  36.46  38.73  33.88  34.39  60.52  53.63  50.62  

 

Someone waiting 

49.48  43.30  85.97  46.92  49.18  79.30  47.35  46.52  59.68  42.89 

49.29  68.69  41.61  46.81  43.75  46.55  42.33  71.48  78.95  42.06 

 

Parametric t-test:  
How do we test whether people take longer to vacate a parking space when someone is waiting? 

The standard t-test for independent samples shows t(38) = -2.150, p=.038 (two-tailed). 

Group Statis tics

20 44.4210 14.09798 3.15240

20 54.1055 14.39418 3.21864

Waiting

1  No

2  Yes

Time

N Mean Std. Deviation

Std. Error

Mean

 
 
 

 

Is this an appropriate test? Have we satisfied the assumptions of the t-test? Let‟s check the 

distributions. 

 
 



  Resampling 6 

These distributions should make us skeptical about the accuracy of the p value from the t-test 

because that p value is computed from a theoretical normal sampling distribution. With relatively 

small samples that are so skewed, the assumption of normality is questionable. 

 

Permutation tests (also called Randomization tests): 

The permutation method of resampling provides an alternative approach that does not require 

any assumptions about the shapes of the distributions, and it can provide a test using a measure 

of your choice.  

 

Suppose that there is absolutely no effect of someone waiting. Then any one of these scores is 

equally likely to be observed in either group. Any random shuffling of these 40 scores is equally 

likely. Theoretically, we could generate all possible combinations and determine whether the 

observed combination is an extreme outcome.  

 

But how should we measure the difference between groups? The t-test is a measure of the 

standardized difference between group means. In practice, we may be more interested in a 

difference in medians, ranges, variances, or something else.  

 

t as a measure of an effect:  
Suppose that we really are interested in the standardized difference between means, but we are 

reluctant to use the parametric t-test because it assumes that the sampling distribution for t values 

is based on an underlying normal distribution. With resampling we can use a calculated t-value 

as a measure of the group difference, but we can test it against an empirical sampling distribution 

for the t-value rather than the theoretically unjustified tabled distribution. In our example, the t-

value for our data is -2.150. We can randomly reshuffle the data into two groups of N=20 each 

and recompute the t-value. If we do this for many reshuffles of the data (e.g., 10,000) we can 

generate an empirical distribution of the computed t-value. This distribution is NOT necessarily 

distributed according to the parametric t distribution. However, we can determine how extreme 

our observed value of -2.150 is in this distribution. If only 214 of the 10,000 shuffles produce a t-

value as small as -2.150, we can conclude that the probability is only about .0214 of observing a 

t-value as small or smaller than our observed value if the null hypothesis is true (one-tailed test). 

 

 

Demonstration of Resampling Procedures using Howell‟s program 
 

David Howell provides a free program that does resampling for some selected statistics. The 

program, instructions for using the program, references on resampling, and discussions of 

resampling can be accessed through his web page http://www.uvm.edu/~dhowell/ . 

 

To replicate the analyses shown here, you need to install Howell‟s program on your computer, 

accessed at http://www.uvm.edu/~dhowell/StatPages/Resampling/Resampling.html  

(follow his instructions for installation). 

 

Howell‟s Resampling Procedures program includes the following subprograms: 

 

Bootstrapping (Generation of confidence intervals) 

 Mean of a single sample 

 Correlation 

 Median of a single sample 
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 Difference between two medians 

 Mediation (not yet operational) 

 Oneway ANOVA 

 

Randomization Tests (permutations of an index of an effect assuming no effect) 

 Two independent samples (independent t as the index of an effect) 

 Two paired samples (dependent t as the index of an effect) 

 Compare medians of two samples (difference between medians) 

  Correlation (permutation program to test Ho: rho=0) 

 Oneway ANOVA via randomization 

 Paired correlations (not yet operational) 

 Repeated measures one-way 

 

Howell’s Randomization Tests (using permutations) 

Howell‟s randomization program Independent Groups t produces a graph of the empirical 

sampling distribution of a computed t-value under the assumption that there is no difference 

between the two populations. The output window shows the obtained t-value of -2.150 along 

with the empirical probability of observing a t-value more extreme than the observed value.  In 

this sample of 10,000 random permutations only 214 samples produced a t-value more negative 

than -2.150 and 177 samples larger than +2.150. Thus, the two-tailed probability of a t-value 

farther from zero than 2.150 is estimated to be .0214+.0177 = .0391 

 

.  
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The observed effect size in the data can be calculated as  

 

680.
246.14

)1055.544210.44()( 21

pooledSD

MM
d

 
(Howell‟s reported effect size of .340 appears to be an error. Maybe it is based on the sum of SD 

rather than pooled SD. Unconventional at least.) 

 

A crucial point to emphasize is that we are using the t-value as a measure of the difference 

between the groups, not as a statistic to be compared to the parametric t distribution. Instead, we 

compared our observed value to an empirical sampling distribution that we generated for this 

statistic. Our estimated two-tailed p-value is .0391, which is virtually the same as the p-value of 

.038 computed for the parametric t-test. (I re-ran this with NReps = 100,000 and got .03697.) 

 

Difference between medians as a measure of an effect: Because of skew in the data and the 

possibility that we may observe an exceptionally long wait time on occasion (e.g., someone 

makes a telephone call before exiting their parking spot), we may be more interested in the 

difference between medians than the difference between means. Howell provides a resampling 

module for this purpose.  

 

In our sample, the median wait time is 39.565 seconds for the first group and 47.135 for the 

second group. The difference between medians is -7.570 seconds. Is this an extreme outcome if 

the scores are randomly scrambled between groups? 
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The output from Howell‟s module with NReps=10,000 shows the empirical sampling 

distribution for the difference between means under the null hypothesis that the scores are 

scrambled randomly between the two groups. The Lower CL = -6.430 is the lower limit for a 

95% confidence interval. Because our observed value of -7.570 is less than this value, we 

conclude that our observed value is not likely if the null hypothesis of equal medians is true.  

 

Note that this test makes no assumptions at all about the shape of the population distributions. 

The empirical distribution shows the distribution of the difference between medians when the 

null hypothesis is true. Using alpha=.05 two-tailed, we can conclude that the typical person 

(median person) does take longer to exit a parking space when someone is waiting for it.  

(I wonder if this finding would replicate in Minnesota or Canada.) 

 

Impact of outliers 

 

Suppose one person in the Waiting group decided to place a telephone call before leaving the 

parking space. To simulate this observation, I added 200 seconds to the last observation in the 

Waiting group, replacing 42.06 with 242.06.  

 

Parametric t: Outliers can wreak havoc with the traditional t test. They often inflate a mean and 

the associated group variance. The result often is less sensitivity for t, even when the effect is 

larger. Violations of assumptions can make parametric tests quite inaccurate.  

 

With this added delay time in the Waiting group, one might expect that the parametric t-test will 

show an even stronger level of statistical significance, with a smaller p value. The actual result 

not assuming equal variance is t (22.8) = -1.898, p=.070, two-tailed. Why is the t-test less 

sensitive when an extreme case is added in the direction to increase the observed effect? The 

within groups variance estimate is greatly increased. If we had a normal distribution with such a 

large variance, a sample mean with N=20 would be quite unstable. We can‟t trust this p value 

because of the severe violation of the assumption of normality.  

 

Permutation test using t: With resampling, the outlier is equally likely to fall into either group, 

resulting in an observed t that will jump between positive and negative values. The observed t of 

-1.898 certainly does not come from a nice normal sampling distribution.  

 

On the next page is the result of 10,000 random shuffles of the data with the outlier included. 

Now we find that our observed t = -1.898 is quite extreme, more extreme than it would be in a 

parametric t-table. Only 157 out of 10,000 shuffles produced a t value farther from zero. Thus, 

we conclude that we have evidence of a difference between the groups (p = .0157, two-tailed).  

 

Note that in contrast to the parametric t test, when we use the resampling application to find the 

empirical sampling distribution of the t-value the evidence for a group difference is stronger in 

the presence of the outlier than when there was no outlier. (On p. 7 we found a two-tailed p-value 

of .0391 for the data without the outlier.)  
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Howell noted that this empirical sampling distribution for t looks like Dilbert‟s boss behind a 

cubical wall. Why does this distribution have two peaks? 

 

The answer is because of the single extreme outlier. When the data are randomly divided into 

two groups, the extreme score is equally likely to be in either group, which will often lead to a 

substantial positive or substantial negative calculated t-statistic. It is really clear that the tabled 

parametric t distribution is not a good model for the actual sampling distribution for the t-

statistic.  
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Permutation test using the difference between medians: Because the extreme score moved an 

observation from below the median to above the median for the Wait group, the observed median 

for the Wait group is 48.265 instead of 47.135, and the difference between medians is -8.700. 

The empirical sampling distribution for the difference between medians has some gaps because 

of gaps in the observed data – some median values are impossible.   

 

 

 
 

 

The empirical lower limit for the 95% confidence interval is -6.935. Because our observed value 

of -8.700 is below this limit, we can conclude that our observed outcome is unlikely if there was 

no difference between the two groups.  
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Entering our own data into Howell’s program 
 

Create your data file in Word. To prepare data for analysis, we need to create a text file (also 

called an ASCII file or a .DOS file). You can create the file in Word, but you must save it using 

the “Plain text” format and you must give it a name ending in .DAT. The data can be entered on 

one or more lines, separated by spaces or new lines. In our Girl Scout cookie sales example the 

information could be on two lines, as follows: 

 

4 5 

0 1 2 5 3 6 7 8 16 

 

The data should begin at the top of the page and there should be no leading spaces. In Word, 

click File,  Save As…, click Save as type…, select Plain text, and name the file with an 

extension of .DAT (e.g., Cookies.DAT). Word wants to give the file the extension .TXT, but 

you must insist on using .DAT. A File Conversion window opens, click OK. The Windows 

default is OK here. 

 

 

Test difference between medians with randomization procedure: Is the observed difference 

between the medians unusual for this set of nine observations split into two groups of 4 and 5 

cases? The observed median of the first group is 1.5 and the median of the second group is 7.0, 

so the observed difference between medians is 5.500 (or -5.500, depending which way we 

compare the two groups). The randomization procedure randomly assigns the nine observations 

into two groups of four and five cases, and calculates the difference in the medians. Repeating 

this 10,000 times gives a probability distribution of the possible outcomes. We can compare our 

observed value of 5.500 to this empirical sampling distribution to determine how unlikely our 

observed result is for a random permutation of this set of nine observations. 

 

In the Resampling Procedures Main Menu, select Analysis, select Randomization Tests, select 

Compare Medians of 2 Samples. Select File, Open, and locate your data file, select it, and click 

Open. You can select the number of replications. Select 10,000. Now click Run. The output is on 

the next page (Randomization of difference of two medians). 

 

The program shows the median for Group 1 (1.500), the median for Group 2 (7.000), and the 

Median Difference (-5.500). Based on the empirical sampling distribution, the 95% Lower CL is 

-5.000 and the Upper CL is 5.000. Thus, our observed value of -5.500 is below the lower limit of 

the confidence interval around zero.  
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The null hypothesis that we are testing is that the two groups have the same distribution in the 

population. If the null hypothesis is true, then our nine scores came from the equivalent 

distributions. If we randomly divide the nine observed scores into a group of four and a group of 

five, we would expect the medians for those two groups to be approximately equal. The 95% 

confidence limits of -5.0 to +5.0 indicate that if the null hypothesis is true we would observe 

differences in medians in this range 95% of the time when we subtract the median for the smaller 

sample from the median of the larger sample.  

 

Because our observed difference in medians is below the lower limit of the confidence interval, 

we reject the null hypothesis that the populations represented by our samples have the same 

distribution.  

 



  Resampling 14 

Test for group difference using t-value as a measure of group difference: 

 

When we computed a t-test to compare the two sample means, we found t (7) = 2.277, p = .057. 

However, it may not be appropriate to compare our calculated t to the parametric t distribution 

because we do not have normal distributions. Instead, we can compare our observed t-value to 

the empirical distribution of t-values under the assumption of no difference between the two 

populations.  

 

In the Resampling Procedures Main Menu, select Analysis, select Randomization Tests, select 

Two Independent Samples. Select File, Open, and locate your data file, select it, and click Open. 

You can select the number of replications. Select 10,000. Now click Run. The output is below. 

 

 
 

 

Here we see that our observed t-value of -2.277 is quite unlikely if there really is no difference 

between the two groups.  Of 10,000 resamples, only 142 samples produced a t-value smaller than 

-2.277 and 231 produced a t-value greater than +2.277. Thus, we conclude that there is a 

statistically significant difference between the two groups, p = .0373.  

 

It is important to note that we did not need to assume anything about the shapes of the population 

distributions. We are using the t-value as a standardized measure of group difference, not as a 

statistic to be compared to a tabled parametric distribution.
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Bootstrapping Demonstrations  
 

With bootstrapping, our goal is to estimate the confidence interval for a statistic of interest, such 

as a calculated t-value or the difference between the medians for two groups. 

 

We use our observed sample distribution as our best representation of the population from which 

we are sampling. Thus, bootstrapping works better when we have larger samples, especially if 

there are outliers in the population. If we have a sample with N1 cases, we draw a new sample of 

N1 cases with replacement from our observed sample. 

 

When we have samples from two groups, as with the Girl Scout Cookie Study, we draw separate 

bootstrapped samples from each group, as illustrated in the Excel example below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our samples in this example are much too small for serious bootstrapping analyses, but they 

work well for illustration. Our observed samples (N1=4 and N2=5) generated a t-value of 2.277 

and a difference between medians of 1.5 – 7.0  =  -5.5.   

 

In any given bootstrap draw, each observed value in a sample is equally likely to be drawn. 

Bootstrap 1 shows a possible result if we randomly sample with replacement from each of our 

observed samples. Here we happened to draw the largest score in the Treatment Group three 

times out of five. In Bootstrap 2 we didn‟t draw that value at all. 

 

For each bootstrap sample we record the statistic of interest, such as the difference between 

medians (here we have 2 - 16 = -14 and 3 - 6 = -30).  The observed t-values were 3.52 and 1.66. 

We can generate a sampling distribution for our statistic representing possible values if cases 

were drawn from a population that looks like our observed samples. 
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The most extreme differences between the medians that would be possible from populations that 

looked like our observed sample would be 0 or 5 for the Control group and 3 or 16 for the 

Treatment group. Thus the bootstrapped samples could find values as extreme as 0 – 16 = -16 on 

one end or 5 – 3 = 2 on the other. The bootstrapped distribution will be centered on the observed 

sample value, however, which showed a difference in medians of 1.5 - 7.0  =  5.5. 

 

Below is a bootstrapped sampling distribution based on 10,000 resamples. The 95% confidence 

interval extends from -14.5 to -1.0. Thus, a median difference of zero is unlikely given 

populations that look like our samples. Certain median differences such as -9 or -10 are 

impossible given our data. A difference of -11 is possible but not -12 or -13. 
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Bootstrapping the difference between medians for the Parking Lot data. 

 

The Parking Lot data from Howell is large and stable enough that bootstrapping can be applied 

with confidence. In this example we use the difference between the medians as our statistic of 

interest. We sample WITH REPLACEMENT from each observed set of scores to create new 

samples the same sizes as the observed samples. We generate an empirical sampling distribution 

for the statistic (difference between medians) by repeating this process many times.  

 

From Howell‟s main menu, click Analysis, select Bootstrapping Procedures, select Compare 2 

Medians via Bootstrapping. Select File, Open, and locate your data file, select it, and click Open. 

Under the number of replications, select 10,000. Now click Run. 

 

Here is an example using 10,000 replications. 

 

 

 
 

The sampling distribution is centered on the observed value of -7.570 and the upper and lower 

limits indicate the likely range for the statistic. In our example, the value of zero falls well 

outside of the range. The sampling distribution for medians is often lumpy and asymmetrical. 
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Resampling with correlations 

 

The difference between randomization and bootstrapping is especially clear with correlations. 

When we use randomization, the null hypothesis is that the X values are randomly paired with Y 

values to form the observed X-Y pairs. Thus, the multiple sample correlations are centered on 

zero, and we are interested in how unusual our observed correlation is on that sampling 

distribution of correlations. 

 

With bootstrapping, we keep each X,Y pair together, but we randomly sample these pairs with 

replacement. Thus, the sampling distribution of correlations is centered on the observed 

correlation, and the empirical sampling distribution may be quite skewed. Our interest is in 

setting confidence intervals for the population correlation. 

 

As an example, we will use data from Howell representing scores on an SAT-type test where 

students were asked to answer questions about a passage that they didn‟t read. Performance on 

this test reflects test-taking skills. How are these skills related to SAT test performance?   

 
Score   58  48  48  41  34  43  38  53  41  60  55  44  43  49 

SAT    590 590 580 490 550 580 550 700 560 690 800 600 650 580 

Score   47  33  47  40  46  53  40  45  39  47  50  53  46  53  

SAT    660 590 600 540 610 580 620 600 560 560 570 630 510 620 

 

SPSS shows r (28) = .532, p = .004, two-tailed. The plot looks reasonably bivariate normal. A 

lowess plot shows a reasonably linear relationship. 
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Randomization (Permutation) Test for Correlation 

 

The data are in a text-only file with the extension of .DAT. The first row has the number of 

cases, 28. Each row thereafter has one pair of observations separated by a space. 

 

With resampling, the X values are fixed and the Y values are randomly redistributed to be paired 

with the X values on each resample. 

 

  

 

 
 

 

From Howell‟s main menu, click Analysis, select Randomization Tests, select Correlation via 

Randomization. Select File, Open, and locate your data file, select it, and click Open. Under the 

number of replications, select 10,000. Now click Run. 

 

The sampling distribution is centered on zero, and it shows that the observed correlation of .532 

is quite unlikely if the observed pairing of X,Y values were randomly scrambled. 
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Bootstrapping Correlations 

 

With bootstrapping we are interested in determining a confidence interval for the population 

correlation based on our sample of N = 28 pairs. With bootstrapping, the 28 X,Y pairs remain 

linked, but on each resample we draw 28 of those pairs with replacement.  

 

The empirical sampling distribution is centered on the observed correlation of .532, and the 

sampling distribution is skewed. No assumption is made about the distribution of the population.  

 

 

 
 

 

Based on this empirical sampling distribution we can conclude that the population correlation is 

unlikely to be smaller than .27. The interval is quite wide because our sample is so very small. 

 

Howell shows that a conventional confidence interval constructed by using Fisher‟s 

transformation runs from .200 to .756. As is generally found, the bootstrapped interval is a bit 

narrower. 
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Bootstrapping with an SPSS macro   
 

Coefficientsa

-12121 3083.0 -3.932 .000 -18179 -6063

1.914 .046 .882 41.271 .000 1.823 2.005

172.297 36.276 .102 4.750 .000 101.014 243.581

(Constant)

salbegin 

Beginning Salary

jobtime  Months

since Hire

Model

1

B

Std.

Error

Unstandardized

Coeff ic ients

Beta

Standardized

Coeff ic ients

t Sig.

Low er

Bound

Upper

Bound

95% Confidence

Interval for B

Dependent Variable: salary   Current Salarya. 

 
 

An SPSS macro to estimate bootstrapped confidence limits for B and beta regression weights can 

be downloaded from http://www2.chass.ncsu.edu/garson/pa765/resamp.htm . This example is 

applied to the SPSS data set of salaries of bank employees. Above is the regression analysis and 

below is output from two bootstrap runs, one with N=100 replications and the other with 

N=1000 replications.    

 

In this example, the bootstrap limits agree quite closely with the results from regression. The 

sample is quite large and the distributions are not extremely far from normal. 

 

Statis tics

100 100 100 100

0 0 0 0

1.75618 .85160 87.21404 .05243

1.92066 .88115 175.29314 .10296

2.18686 .91620 261.56327 .14651

Valid

Miss ing

N

2.5

50

97.5

Percentiles

salbegin_B

salbegin_

Beta jobtime_B jobtime_Beta

 
 

Statis tics

1000 1000 1000 1000

0 0 0 0

1.76992 .85045 101.20384 .05973

1.92205 .88450 174.83254 .10289

2.13976 .91242 246.29098 .14380

Valid

Miss ing

N

2.5

50

97.5

Percentiles

salbegin_B

salbegin_

Beta jobtime_B jobtime_Beta

 
 

Version 18 and higher of IBM SPSS has an add-on option that makes bootstrapping available at 

the touch of a button for many analyses. With this easier access, it is likely that resampling will 

finally begin to be used more often where it has a clear advantage over parametric analyses. 
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Software: 

 

R is a free software environment for statistical computing and graphics. www.r-project.org/          

S-PLUS has special libraries for resampling. Hesterberg provides additional code.    

 

Resampling Statistics (Resampling Stats Inc., 612 N. Jackson Ave., Arlington, VA 22201; email 

stats@resample.com; http://www.statistics.com ).  

 

Commercial site: http://www.resample.com/content/index.shtml 
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